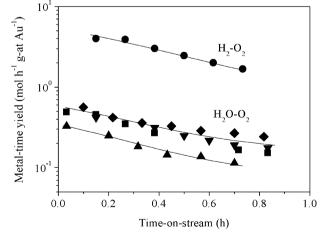
Catalytic epoxidation of propene with H₂O-O₂ reactants on Au/TiO₂⁺

Manuel Ojeda and Enrique Iglesia*

Received (in Cambridge, UK) 5th August 2008, Accepted 5th November 2008 First published as an Advance Article on the web 3rd December 2008 DOI: 10.1039/b813589d

Au/TiO₂ catalysts form hydroperoxy species from H_2O-O_2 mixtures at near-ambient temperatures; these species can be used in the selective epoxidation of propene to propylene oxide.


Propylene oxide (PO) is a useful intermediate in the synthesis of polyurethane, organic intermediates and solvents (*e.g.* propylene glycol).¹ PO is currently produced by chlorohydrin or hydroperoxide processes,² which require toxic, corrosive, or explosive reagents, and form significant amounts of waste by-products. Hydrogen peroxide has been used as an oxidant to replace alkyl hydroperoxides in PO synthesis.³

Small Au clusters (<5 nm) dispersed on Ti-containing oxides, such as TiO₂ and TS-1, catalyze propene epoxidation via the in situ formation of hydroperoxy species (*OOH) from H₂-O₂ mixtures.⁴⁻⁷ Mechanistic studies have suggested that hydroperoxy species form on Au clusters via H2 reactions with O₂; these species then react with propene on Ti centers located within molecular distances to form PO with high selectivity.^{8,9} This process uses H₂ as a sacrificial reductant, which predominantly converts, however, to H₂O via unproductive side reactions, and leads to low H2 utilization efficiencies (30-40%, defined as PO formed per H₂ consumed) and unfavorable economics.² H_2O_2 was recently detected during CO oxidation with aqueous systems and Au catalysts;¹⁰ these molecules or their adsorbed precursors may therefore form also from O2/H2O mixtures. Our recent kinetic and isotopic data indicate that *OOH species formed from H₂O/O₂ account for the strong effect of H₂O on the rate of CO oxidation on Au catalysts.¹¹ We provide here evidence for the formation of *OOH species from H₂O and O₂ by detecting and reporting for the first time the formation of PO via propene reactions using H₂O/O₂ mixtures, which appear to act as precursors for peroxide species. H_2O/O_2 mixtures form PO with selectivities as high as 80% on Au/TiO2 at near-ambient temperatures (300-350 K).

Au/TiO₂ (1.56 wt% Au, 3.3 ± 0.7 nm mean cluster diameter determined by transmission electron microscopy) was prepared by deposition–precipitation and provided by the World Gold Council. Au/Al₂O₃ (0.61 wt%, 3.5 ± 1.2 nm) was also prepared by deposition–precipitation methods.¹² HAuCl₄· *x*H₂O (0.24 g, Aldrich, 99.999%) was dissolved in deionized H₂O (80 cm³) at 353 K. The support (5 g, γ -Al₂O₃, Alcoa) was

treated in air at 923 K for 5 h and suspended in deionized H₂O (120 cm³) at 353 K. Au was deposited onto Al₂O₃ at 353 K and a pH of 7 (adjusted with 0.5 M NaOH) by mixing the two solutions with stirring for 1 h. Solids were filtered and washed twice with deionized water at ambient temperature and then once at slightly higher temperatures (323 K), and held in ambient air for 24 h. TiO2 was obtained from Degussa (P25, anatase/rutile \sim 4). Propene (4 kPa, Praxair, UHP) epoxidation rates and selectivity were measured using O₂ (4 kPa, Praxair, UHP) at 350 K in the presence and absence of H₂ (4 kPa, 99.999%, Praxair) or H₂O (0-12 kPa) using a tubular flow reactor with plug-flow hydrodynamics (He was used as balance). Au/TiO₂ was used as-received, while Au/Al₂O₃ was treated using protocols reported previously.¹² Reactant and product concentrations were measured by gas chromatography (Agilent 6890GC) using a Porapak Q packed-column (80-100 mesh, 1.82 m × 3.18 mm) and a HP-1 capillary column (50 m \times 0.32 mm; 1.05 μ m film) with thermal conductivity and flame ionization detection, respectively.

Fig. 1 shows PO formation rates (metal-time yield, per Au atom) at 350 K as a function of time-on-stream on Au/TiO₂ when H₂–O₂ or H₂O–O₂ were used as the oxidant. Propene epoxidation rates and selectivities (~95%) and catalyst deactivation rates (0.76 h⁻¹ first-order deactivation rate constant) in H₂–O₂ mixtures are similar to those previously reported (ESI†). Strongly-adsorbed PO-derived species have been claimed to cause this deactivation.¹³ PO selectivities remained nearly unchanged as deactivation occurred and

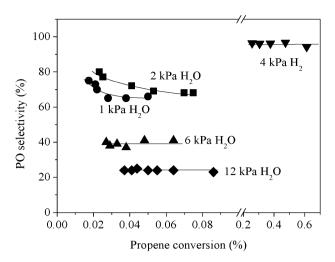


Fig. 1 Rate of propylene oxide formation (expressed as metal-time yield) from C_3H_6 (4 kPa) and O_2 (4 kPa) at 350 K from with Au/TiO₂ as a function of time-on-stream using H₂ or H₂O as co-reactants: 4 kPa H₂(\bullet); 1 kPa H₂O (\blacktriangle); 2 kPa H₂O (\blacksquare); 6 kPa H₂O (\blacktriangledown); 12 kPa H₂O (\blacklozenge).

TEM micrographs. See DOI: 10.1039/b813589d

Deparment of Chemical Engineering, University of California, Berkeley, CA 94720, USA. E-mail: iglesia@berkeley.edu; Fax: +1 510 642 477; Tel: +1 510 642 9673

 $[\]dagger$ Electronic supplementary information (ESI) available: Products identification by gas chromatography, rate of propene epoxidation with Au/TiO₂ catalysts, proximity between Au and Ti centers, frequency of H₂O₂ collisions with Au clusters, and high-resolution

Fig. 2 Selectivity (carbon basis) to propylene oxide obtained with Au/TiO_2 at 350 K at different propene conversion levels changed by catalyst deactivation (4 kPa C_3H_6 ; 4 kPa O_2 ; 4 kPa H_2 ; 1–12 kPa H_2O).

conversion decreased (Fig. 2). These data, taken together with the intermediate selectivites observed as data are extrapolated to zero conversion, indicate that both PO and acetone form as primary products and that deactivation occurs by blocking of sites without concomitant changes in the relative rates of PO and acetone synthesis.

Fig. 1 and 2 provide evidence for the previously unrecognized ability of Au/TiO_2 to catalyze propene epoxidation with O_2 and H_2O (instead of H_2) as co-reactant. We have carried out experiments for extended periods of time (ESI†), during which we carry out more than 10 epoxidation turnovers, calculated on the basis of surface Au atoms (from TEM cluster diameters). These turnover numbers represent a lower bound, because they assume that all exposed Au atoms act as active sites, irrespective of their location with respect to Ti centers. These data confirm that the propene epoxidation rates reported here with H_2O-O_2 co-reactants are catalytic on Au/TiO₂.

The synthesis of PO during water electrolysis, probably via in situ generation of H₂O₂ or OOH species, has been reported.¹⁴ In contrast, catalytic epoxidation of propene or other substrates with H2O-O2 reactants have not been previously reported. PO synthesis rates with H₂O-O₂ reactants are significantly lower than with H2-O2, but the former avoid significant losses of costly H₂ co-reactant via its unproductive pathways to form H₂O instead of OOH species (hydrogen efficiency ~29%). O₂–H₂O mixtures may form HOO* species via the microscopic reverse of elementary steps for H₂O₂ decomposition.^{15,16} These steps can occur, in spite of their unfavorable thermodynamics, because of their kinetic coupling with propene epoxidation steps that scavenge HOO* intermediates to form PO. OH* groups formed in these steps must recombine to form H_2O^* and O^* , since H_2O is not consumed during reaction. O* is not predominantly removed via unselective scavenging with PO to form other products (e.g., acetone, propanal, acrolein), because measured PO selectivities are >50% (Fig. 2). Thus, O* species must act as epoxidation reactants, desorb as O_2 (2O^{*} $\rightarrow O_2$ + 2^{*}), or form ozone molecules ($O^* + O_2 \rightarrow O_3^*$), which are then used in epoxidation turnovers.^{17,18}

Both H_2O and O_2 are needed to form active hydroperoxy species required for PO synthesis. Neither C₃H₆-O₂ nor C₃H₆-H₂O reactants formed detectable products on Au/TiO₂ at 350 K. PO synthesis also requires the presence of both Au and Ti sites. We did not detect PO from C₃H₆-O₂-H₂ or C₃H₆-O₂-H₂O reactants on either TiO₂ or Au/Al₂O₃ catalysts. Au and Ti sites must reside in reasonable proximity, since PO was not detected when C₃H₆-O₂-H₂ or C₃H₆-O₂-H₂O reactants were contacted with a physical mixture Au/Al₂O₃ and TiO₂ (mass ratio 1:1, 0.125-0.250 mm aggregates). Water inhibits combustion during C₃H₆–O₂ reactions on Ag-based catalysts, but does not increase PO synthesis rates.¹⁹⁻²¹ We find instead that the role of H₂O on Au/TiO₂ is to significantly increase PO synthesis rates. Propene combustion rates were undetectable on Au/TiO₂ with or without added H₂O.

The rate of PO formation (extrapolated to zero timeon-stream) increased slightly from 0.5 to 0.7 mol h^{-1} (g-at Au)⁻¹ when the H₂O partial pressure in equimolecular C₃H₆–O₂ mixtures (4 kPa) increased from 1 to 2 kPa (Fig. 1); higher H₂O pressures (up to 12 kPa), however, did not influence reaction rates.

The PO synthesis rates reported here are inconsistent with the use of gaseous H2O2 reactants as intermediates and indicate that PO is formed instead from propene and adsorbed hydroperoxide species. H₂O₂ pressures in equilibrium with O_2/H_2O (4 kPa/12 kPa) are 7 × 10⁻¹⁸ kPa (K_{eq} = 1.48×10^{-19} kPa^{-1/2}; 350 K). At this pressure, the frequency of H_2O_2 collisions with Au clusters (ESI^{\dagger}) would be 5×10^{-6} mol h⁻¹ (g-at Au)⁻¹, a value much lower than required to maintain the observed epoxidation rates $(\sim 0.7 \text{ mol } h^{-1} \text{ (g-at } Au)^{-1})$, consistent with an inadequate supply of H₂O₂(g) as the reactive species and with PO synthesis via propene reactions with hydroperoxy surface species instead of H₂O₂. The involvement of bound hydroperoxy species requires, in turn, atomic proximity between the sites that form *OOH (Au) and those that consume it via reactions with propene (Ti), possibly at Au-TiO₂ interfaces, as proposed earlier⁴ and consistent with the absence of epoxidation turnovers on physical mixtures of Au/Al₂O₃ and TiO₂.

Density functional theory $(DFT)^{22}$ suggests that OOH species can form from H₂O and O₂ on Au₈ clusters to form $[O_2 \cdot H_2O]$ complexes in which protons are shared between H₂O and O₂ to ultimately form adsorbed (HOO*) complexes. We propose that these species can act as effective oxidants in reactions of CO to CO₂.¹¹ and, in the present study, for propene epoxidation to PO.

 $C_3H_6-O_2-H_2O$ reactants form predominantly PO and acetone on Au/TiO₂ at 350 K. Fig. 2 shows PO selectivities at various H₂O inlet pressures. PO selectivities increased slightly from 65 to 70% as H₂O pressure increased from 1 to 2 kPa, but then decreased markedly (70 to 20%) at higher H₂O pressures (2–12 kPa). with a concurrent increase in acetone selectivity. The selectivities to PO and acetone depend only weakly on propene conversion, suggesting that both can form *via* primary pathways. The strong effects of H₂O pressure on PO selectivity and the slight increase in acetone selectivity with increasing conversion show, however, that secondary reactions of PO to form acetone are favored by H₂O. PO synthesis rates, however, are independent of H_2O pressure above 2 kPa, while acetone synthesis rates increased monotonically with H_2O pressure.

The data in Fig. 1 and 2, taken together, suggest that maximum PO yields are achieved at intermediate H_2O pressures. While rates are lower than with H_2 as co-reactant, the use of H_2O avoids the need for H_2 and its predominant loss *via* unproductive combustion side reactions.

The presence of small Au clusters (< 5 nm) is a key parameter for their catalytic reactivity in many reactions.¹ Recent studies have shown, however, that large Au clusters ($\sim 16 \text{ nm}$) are also active in alkene epoxidation with NO₂ as the oxidant.²³

In summary, we provide evidence here for the unprecedented ability of Au/TiO₂ catalysts to form hydroperoxy surface species from O_2/H_2O mixtures and for their involvement in oxidation reactions, such as selective conversion of propene to PO at near-ambient temperatures (350 K). These pathways provide an attractive strategy to replace H_2 by H_2O in propene epoxidation reactions. We expect that these hydroperoxy intermediates will prove useful for other epoxidation reactions upon more rigorous evaluation and optimization.

M. Ojeda acknowledges financial support from the European Union (Marie Curie Actions). This work was also supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract DE-AC02-05CH11231.

Notes and references

1 G. C. Bond, C. Louis and D. T. Thompson, *Catalysis by gold*, Imperial College Press, London, 2006.

- 2 T. A. Nijhuis, M. Makkee, J. A. Moulijn and B. M. Weckhuysen, Ind. Eng. Chem. Res., 2006, 45, 3447.
- 3 A. Tullo, Chem. Eng. News, 2004, 82, 15.
- 4 T. Hayashi, K. Tanaka and M. Haruta, J. Catal., 1998, 178, 566.
- 5 J. J. Bravo-Suarez, J. Lu, C. G. Dallos, T. Fujitani and S. T. Oyama, J. Phys. Chem. C, 2007, 111, 17247.
- 6 T. A. R. Nijhuis, T. Visser and B. M. Weckhuysen, *Angew. Chem., Int. Ed.*, 2005, **44**, 1115.
- 7 G. J. Hutchings, Chem. Commun., 2008, 1148.
- 8 D. G. Barton and S. G. Podkolzin, J. Phys. Chem. B, 2005, 109, 2262.
- 9 B. Chowdhury, J. J. Bravo-Suarez, N. Nimura, J. Lu, K. K. Bando, S. Tsubota and M. Haruta, *J. Phys. Chem. B*, 2006, **110**, 22995.
- 10 W. C. Ketchie, M. Murayama and R. J. Davis, *Top. Catal.*, 2007, 44, 307.
- 11 M. Ojeda, B. Z. Zhan and E. Iglesia, in preparation.
- 12 C. K. Costello, J. Guzman, J. H. Yang, Y. M. Wang, M. C. Kung, B. C. Gates and H. H. Kung, *J. Phys. Chem. B*, 2004, **108**, 12529.
- 13 J. Lu, X. Zhang, J. J. Bravo-Suarez, S. Tsubota, J. Gaudet and S. T. Oyama, *Catal. Today*, 2007, **123**, 189.
- 14 K. Otsuka, T. Ushiyama, I. Yamanaka and K. Ebitani, J. Catal., 1995, 157, 450.
- 15 D. W. Mackee, J. Catal., 1969, 14, 355.
- 16 P. Landon, P. J. Collier, A. J. Papworth, C. J. Kieley and G. J. Hutchings, *Chem. Commun.*, 2002, 2058.
- 17 T. Berndt and O. Böge, Chem. Lett., 2005, 34, 584.
- 18 F. J. Waller, A. J. Bailey, W. P. Griffith, S. P. Marsden and E. H. Smith, J. Mol. Catal. A: Chem., 2000, 154, 85.
- 19 J. T. Ranney, S. R. Bare and J. L. Gland, Catal. Lett., 1997, 48, 25.
- 20 C. Piccinini, M. Morelli and P. Rebora, US Patent 3959316, 1976.
- 21 R. G. Bowman, US Patent 4845253, 1989.
- 22 A. Bongiorno and U. Landman, Phys. Rev. Lett., 2005, 95, 106102.
- 23 M. Turner, O. P. H. Vaughan and R. M. Lambert, Chem. Commun., 2008, 2316.